摘要
为建立准确有效的交通事故预测模型,提升高速公路交通安全水平,以重庆市11条高速公路2011—2016年共计65 119起交通事故为基础,选取“事故数量”和“死亡人数”2项总量指标,描述统计高速公路交通事故在时间维度上的月分布规律。通过自回归差分移动平均(ARIMA)模型捕捉时间序列数据中的线性时序特征,使用长短时记忆神经网络(LSTM)模型拟合预测残差序列中的非线性时序特征,建立了基于ARIMA和LSTM的高速公路交通事故组合预测模型,并以均方根误差(RMSE)、平均绝对百分比误差(MAPE)值作为模型的评估指标。结果表明:ARIMA-LSTM组合预测模型各项指标的预测精度均优于单一的ARIMA模型,其中“死亡人数”组合模型改善效果显著,其RMSE与MAPE值相较于ARIMA模型分别改善了55.83%和54.80%;“事故数量”组合模型的RMSE和MAPE相较于ARIMA模型改善了23.15%、23.29%。
-
单位云南省交通规划设计研究院有限公司; 重庆交通大学; 土木工程学院