摘要
为提高多目标跟踪方法的跟踪效率,提出一种基于锚框对齐卷积特征的目标检测-表观特征提取联合网络(AAC-JDAN)。首先,在YOLOv3目标检测网络的基础上,引入锚框变换网络与锚框对齐卷积,使网络在获得旋转目标检测能力的同时,缓解现有方法中存在的检测-表观联合网络提取的表观特征与旋转目标之间关联性弱的问题;其次,通过在检测头部网络中加入目标表观特征提取分支,以多任务联合学习的方式对目标检测和目标表观特征提取两个子任务进行合并,实现对图像底层特征的共享,在检测目标的同时输出目标对应的表观特征向量,提高跟踪算法的整体效率;最后,提出一种快速的在线数据关联方法,结合AACJDAN获取的目标表观特征和卡尔曼滤波得到的目标运动状态预测结果,计算目标与轨迹段间的相似度矩阵并使用KM(Kuhn-Munkres)算法进行匹配,实现对视频中多个旋转目标的高效跟踪。在两个公共数据集和一个自定义数据集上进行实验,TPR指标、MOTA指标和IDF-1指标分别达到了80.4%、71.3%和69.5%,帧速率达到20帧/s,表明本文方法在跟踪的实时性和准确性上达到了更好的平衡。
- 单位