摘要

目的非相关观测是压缩感知(CS)理论中的关键因素。高斯随机矩阵作为一种普适的CS非相关观测矩阵,在压缩感知中得到广泛的研究与应用。但在实际应用中,却存在实际内存占用较多,不适应大规模应用的问题。为寻求降低随机观测矩阵所需的存储空间,提出一种基于半张量积的压缩感知方法,利用该方法可以成倍地降低观测矩阵所需的存储空间。方法该方法利用半张量积理论,构建降维随机观测矩阵,实现对原始信号的随机观测,并采用lq(0<q<1)范数的迭代重加权最小二乘法进行重构,从而得到稀疏信号的估计值。结果仿真实验分别采用1维稀疏信号和2维图像信号进行了测试,并从重构概率、迭代收敛速度、重构信号的峰值信噪比等角度进行了测试和比较。通过不同大小的随机观测矩阵比较验证表明,采用降维后观测矩阵进行采样和重构,其重构信号质量并没有明显下降,但其观测矩阵所需的存储空间却可大大降低,如降低为通常的1/4,1/16,甚至更低。结论本文压缩感知方法,可以大大降低观测矩阵所需的存储空间,同时有效降低数据运算复杂度以及内存占用率,有助于压缩感知的应用。

  • 单位
    浙江树人学院