摘要
为提高航空公司能耗的预测精度,针对能耗数据的复杂非线性时序特性,提出一种基于长短时记忆网络(LSTM)的时间窗滑动航空公司能耗预估模型。该方法对能耗时序数据进行预处理,消除能耗时序数据的季节性趋势;依据滑动时间窗将数据转换成监督型数据,构建基于LSTM的模型来实现航空公司能耗预测,并利用网格搜索算法进行参数优选。实验结果表明,该模型预测精度优于传统ARMA模型、SVR模型,验证了其可行性。
-
单位中国民航大学; 自动化学院