摘要

针对交通信号灯检测中目标尺度小、检测精度低的问题,提出一种改进YOLOv5s的交通信号灯检测算法.首先,构建一种特征金字塔模块RSN-BiFPN,充分融合不同尺度的交通信号灯特征,以减少目标漏检和误检.其次,引入新的特征融合层和预测头,提高网络对小目标的感知性能,增强检测准确性;最后,采用EIoU函数优化损失,加快网络收敛速度.通过在S2TLD公开数据集上进行的大量的实验结果表明,本文所提方法相较于基础网络,精确率提升4.1%,达96.1%;召回率提升3%,达95.9%;平均精确度提升1.9%,达96.5%.同时,改进后的算法实现了更快的检测速度,达每秒22.7帧,本文方法有效实现交通信号灯快速、准确地检测,可广泛应用于交通道路中信号灯分析相关研究.

全文