摘要

图像去雨指通过去除图像中的雨痕来重构出高清背景图像的过程。目前最广泛应用于图像去雨任务的是深度卷积神经网络。卷积操作的核心是参数共享,这大大减少了计算量并提升了算法的泛化能力,然而这也导致卷积操作无法有效考虑到局部之间的联系和较远的像素点对所操作区域的影响,出现图像去雨中的过平滑现象。结合图网络的思想和机制,提出一个改进卷积方式。首先将所有像素点视为一个图节点,计算相邻像素点之间的相似度,根据设定的阈值判断有无边联系,完成图结构构建后,所得到的邻接矩阵与相似度矩阵会在卷积操作时对卷积核参数进行调整,充分考虑像素点之间的联系与提取拓扑信息。在图像去雨领域若干公开数据集上对多个最新算法进行对比,实验结果显示所提改进卷积的有效性,可以在不增加许多计算资源的前提下有效提升算法的性能。