摘要
针对传统模糊Petri网在对不确定环境下的专家系统的知识表示与推理时无法兼顾不确定知识的模糊性与随机性、在复杂的故障情况下故障的因果关系表达不清晰、定量推理计算时缺乏层次性、不能局部求解的问题,构建一种基于云模型的分层模糊Petri网以加强模糊Petri网的知识表示能力和提高推理过程的计算效率。利用专家知识和Petri网层次分解原则将系统故障模式和故障原因之间的因果关系进行建模,使故障建模更具结构性,计算更加灵活;应用云模型处理知识的模糊性和不确定性;通过合理考虑局部权重和全局权重,结合Petri网层次分解原则和云聚合算子给出相应的推理算法。实例验证表明,所提方法能够有效对系统进行风险评估,且在知识表示和推理方面优于其他方法。
-
单位机电工程学院; 江西理工大学