摘要
针对复杂仓储环境中粮情温度单点预测效果不理想、现有温度场建模难以满足工程应用需求等问题,基于温度场理论,结合分布式测温系统结构,提出了基于粮堆温度数据的温度场预测模型。该模型基于BP神经网络,利用粮仓内离散测温点数据预测对应点的未来温度数据;再采用Kriging插值法进行空间插值,利用已知位置的温度值估计出未知点的温度值,进而建立温度场的预测模型。仿真测试结果表明,温度预测的平均绝对百分误差为1.253 5%,均方根误差为0.106 0,预测效果良好。采用Kriging插值法进行温度点的插值,其平均绝对百分误差为9.470 0%,均方根误差为0.865 1。对比于传统的粮堆温度单点预测算法,该模型能够更好地反映粮仓内温度场变化趋势以及温度分布的情况,为粮仓管理者提供更好的数据支持,实现辅助决策。该模型可扩展性强,能够适用于各种仓储现场。
-
单位安徽大学; 电子信息工程学院