摘要
水下目标分类识别的性能受所选特征的限制,多特征往往可以获得更加稳定的结果,针对这一问题,提出了一种基于联合稀疏表示模型的水下目标分类识别方法。首先对水下目标回波信号提取3种具有信息互补性与关联性的特征:中心矩特征、小波包能量谱特征、梅尔频率倒谱系数特征,然后应用加速近端梯度法对联合稀疏表示模型进行优化,求解得到最优联合稀疏系数,最后根据最小误差准则确定目标类别。在消声水池开展模拟实验,对6类目标进行分类识别,结果表明:与传统算法相比,提出的算法具有更高识别准确率,并且其执行效率较传统算法有很大提升。
- 单位