摘要
热脱扣时间是低压断路器的关键指标,利用断路器生产过程中可检测数据可以实现热脱扣时间的预测。针对支持向量回归(SVR)进行热脱扣时间预测,参数的选择对预测的精度和泛化性能影响较大问题,提出一种基于隔离小生境教学算法(Isolated Niche Teaching-Learning-Based Optimization Algorithm,INTLBO)优化支持向量回归的热脱扣时间预测方法。该方法针对教学算法易陷入局部最优的缺点,采用隔离机制的小生境技术对其进行改进,然后利用INTLBO寻优找到最优的SVR参数。根据低压断路器生产历史数据,建立基于INTLBO-SVR的热脱扣时间预测模型。仿真结果表明,与TLBOSVR和常规SVR等方法相比,INTLBO-SVR模型具有较好的预测性能。
- 单位