摘要

针对道岔设备故障频繁、维修成本高,且现有基于故障数据的诊断方法无法描述道岔退化过程,难以实现故障超前预判的问题,进行基于SOM-BP混合神经网络的道岔设备退化状态研究。依据采集的道岔非故障功率数据按区段提取峰值、方差、峭度等特征参数,基于平均影响值进行特征参数选择,并确定输入维数;使用自组织特征映射(SOM)神经网络对输入特征参数进行多次聚类学习,分析学习结果得到6种退化状态样本数据;构建15-13-6型BP神经网络结构模型,实现对道岔设备退化状态的识别。结果表明,采用SOM-BP混合神经网络进行道岔设备退化状态识别的准确率达到95.56%。

  • 单位
    朔黄铁路发展有限责任公司; 中国铁道科学研究院集团有限公司