针对电力电子电路的混杂系统模型的参数辨识问题,提出运用量子粒子群算法(QPSO)对电力电子电路中元器件的参数进行辨识,相对于传统的参数辨识,该方法能更加精确的辨识元器件。先测试函数证明算法的辨识性能,然后以非理想Boost电路为例,求解得到电路中所有关键元器件的特征参数值,在仿真中与基本算法和遗传算法(GA)比较,最后通过物理实验证明该算法的有效性,可用于器件参数性故障的趋势判断,对混杂系统寿命预测的发展有着非常重要的意义。