摘要
目前关于集成学习的泛化性能的研究已取得很大成功,但是关于集成学习的误差分析还需要进一步研究.考虑交叉验证在统计机器学习中对于模型性能评估有重要应用,为此,应用组块3×2交叉验证和k折交叉验证方法为每个样本点进行赋予权重的预测值的集成,并进行误差分析.在模拟数据和真实数据上进行实验,结果表明基于组块3×2交叉验证的集成学习预测误差小于单个学习器的预测误差,并且集成学习的方差比单个学习器方差小.与基于k折交叉验证的集成学习方法相比,基于组块3×2交叉验证的泛化误差小于基于k折交叉验证的泛化误差,说明基于组块3×2交叉验证的集成学习模型稳定性好.
-
单位山西工商学院