摘要
建立了激光熔凝气门座的数学物理模型,模型中考虑了材料的热物性参数随温度的变化及材料的相变潜热。结果表明:随激光功率的增加,激光熔凝气门座熔池最高温度升高,且激光熔凝区的深度和宽度增加;随激光扫描速度的提高,激光熔凝气门座的最高温度下降,且熔凝区的深度和宽度减小;随激光光斑半径的增加,激光熔凝气门座的最高温度降低,激光熔凝区深度减小。激光熔凝气门座过程是新熔池形成和已形成的熔池凝固二者同步的过程,由于不同区域温度分布和冷却速度等差异,导致气门座表面熔池形态为彗星拖尾状;且彗星拖尾状随激光功率的增大而增加,彗星拖尾状随扫描速度和激光半径的增加而降低。随激光半径的增加,熔池彗星拖尾的尖形曲率减小。实验与数值模拟结果基本吻合,这说明了模型的有效性。
- 单位