摘要

为了更好地解决通信网络中存在的恶意攻击,保护用户数据安全,通过生成式对抗网络的生成模型和判别模型相互博弈不断优化,构造成最优判别器,可以对数据攻击进行检测。主要介绍生成式对抗网络(GANs)和Wasserstein生成式对抗网络的区别、模型及算法,通过研究GAN与WGAN梯度消失问题,实验证实WGAN可以有效地解决网络收敛性差、模型自由不可控、训练不稳定等问题,具有更好的性能。