摘要

针对轮毂生产过程中产生的气孔、缩松、缩孔、裂纹和夹杂缺陷进行识别检测研究。对经过预处理操作后的缺陷图像运用布谷鸟算法结合大津法的CS-Otsu算法,寻找最优阈值T以便缺陷部分与背景分割。通过提取不同类型缺陷的特征数据构建样本数据库。基于萤火虫算法改进BP神经网络的GSO-BP算法优化权值及阈值,并结合构建的缺陷数据库实现对轮毂缺陷类型的检测。通过结果可知运用基于改进遗传算法的正确识别率为95%,高于传统遗传算法,能够满足缺陷检测要求。