摘要

检泵周期是反映抽油机井工作情况的重要指标,准确预测检泵周期对提高油井产能和经济效益具有重要意义。针对油田检泵周期预测准确率低等问题,提出一种基于特征融合抽油机井检泵周期预测方法。该方法引入SVR提取油田数据的静态特征,利用卷积神经网络学习油田数据的动态特征,引入多模态压缩双线性池化对静态特征和动态特征进行融合,利用判别模型训练融合特征实现检泵周期的准确预测。实验结果验证了该模型的有效性和可行性。