摘要

针对立体图像的多维影响因素和预测结果准确性不足的问题,提出一种基于卷积神经网络-支持向量回归(CNNSVR)的立体图像视觉感知客观评价模型。该模型将基于颜色的平面显著图和基于差异的视差图相结合,对其进行阈值分割,得到视觉感知潜在显著不适区域;然后进行特征提取,分别提取对比度、颜色、结构复杂度等全局特征和视差、纹理、空间频率等局部特征;最后采用将CNN和SVR相结合的方式构建多特征视觉感知客观评价模型,得到最终的客观预测值。实验结果表明,所提方法的Pearson相关系数高于0.87,Spearman相关系数高于0.83。与现有其他方法相比,在公开数据集上所提客观评价模型更优,预测结果与人们主观评价结果具有更高的一致性。