摘要

随着风力发电的大规模发展和并网运行,风电场输出功率的精确预测对电力系统的运行具有重大意义。针对风力发电功率具有非线性和非平稳的特性,利用经验模态分解和核极端学习机结合的方法对短期风力发电功率预测进行研究。通过经验模态分解把风电功率时间序列分解成为一系列相对平稳的子数据序列,对每个子数据序列采用核极端学习机算法分别进行模型建立与预测,把每个预测模型得到的子数据序列预测值相加获得最终的风电功率预测值。基于此方法的某风电场输出功率实例数据预测仿真结果表明,该方法的预测模型能更好地跟踪风电功率的变化,预测误差比单独KELM方法减小7.6%,比EMD-SVM方法减小1.7%,能够在一定程度上提高风电功率预测的准确性。

全文