摘要
针对低速运行滚动轴承故障特征易被噪声湮没的问题,提出了一种基于可调品质因子小波分解的分层自适应阈值去噪方法,并将该方法与包络谱分析相结合,对低速轴承进行故障分析与诊断;首先,将采集到的轴承振动信号进行TQWT分解,得到分解后的各层小波系数;然后,利用Sigmoid函数构造分层自适应阈值函数,并利用该阈值函数对TQWT的高频系数进行阈值去噪处理;最后,结合去噪后的高频小波系数和低频小波系数对信号进行重构,得到去噪后的轴承振动信号;通过仿真故障信号,模拟故障实验信号和实测故障信号分别进行了去噪实验分析;实验结果表明,经典的软阈值函数和硬阈值函数相比,该方法能获得更好的去噪效果,在降低噪声干扰的同时,有效保留了轴承的故障特征信息,去噪后信号的包络谱,可以清晰地呈现故障的频谱特征,并观察到故障特征的多倍频峰值,且峰值附近干扰很少,有效提高了轴承早期故障的诊断精度;在仿真信号实验中,与软阈值、硬阈值函数相比,该方法去噪后,具有更高的信噪比(SNR)和更低的均方根误差(RMSE),与硬阈值函数相比,此方法的SNR平均增加了4.149 1,RMSE平均下降了0.132 9;与软阈值函数相比,该方法的SNR平均增加了5.111 8,RMSE平均下降了0.150 5。
- 单位