基于对抗生成网络的太赫兹安检图像分割算法

作者:杨墨轩; 赵源萌*; 朱凤霞; 刘昊鑫; 张存林
来源:太赫兹科学与电子信息学报, 2023, 21(02): 143-149.

摘要

为解决太赫兹成像分辨力低,危险品边缘模糊,无法有效对危险品进行分割的问题,提出一种基于对抗式生成网络与多头注意力机制的新型网络架构,并用于太赫兹安检图像智能分割。通过学习深层鉴别器的特征图优化生成器,获得更加真实的生成图像;引入多头注意力机制提升模型对危险品特征的识别能力。分割太赫兹安检图像的大量实验结果表明,相较于传统卷积神经网络,提出的对抗生成网络在相同深度下具有更好的泛化能力;多头注意力机制的引入强化了模型对危险品特征的学习,在未知危险品类别的情况下同样拥有较好的效果,其交并比(IOU)指标相较ResNet-50提高9.6%,相较ResNet-18提高21.3%,相较U-Net提高12.3%。本文研究有利于图像分割算法更准确、高效地处理太赫兹安检图像,有助于拓宽太赫兹智能安检系统的进一步应用。