针对传统文本分类方法忽略词语间的语义特征的问题,并为了改善输入文本的表示质量,提出一种基于短语结构和词语词性相结合的情感分类方法.该方法首先通过短语结构优化分词,可以更好地提取文本特征;其次利用Word2vec工具训练词语和词性相结合的文本语料库得到词向量模型,解决了Word2vec无法识别一词多义的问题;最后通过SVM算法对文本进行情感分类.实验结果表明,该算法能够提高文本情感分类的正确性.该方法对舆情监控、股票市场行情预测和了解消费者对产品的偏好等具有较高的实用性.