摘要
[目的/意义]旨在利用文本挖掘技术和XGBoost算法构建量刑预测模型,实现量刑预测的智能化。[方法/过程]首先设计了量刑预测模型的构建路径,然后采用XGBoost算法构建了预测模型,最后将模型与多种算法(随机森林、决策树、KNN等)进行了比较,探讨了量刑预测模型的特征选择问题。[结果/结论]基于3208条司法判例数据所构建的量刑预测模型,对量刑严重程度和有期徒刑时长的预测准确率达到了80.02%和78.46%,优于其他算法。研究表明,XGBoost算法在非法经营罪的量刑预测中具有实践应用价值。