摘要

基于修正的Darcy模型,介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展.通过线性稳定性理论,分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, DarcyBrinkman-Oldroyd以及Darcy-Brinkman-Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响.利用弱非线性分析方法,揭示失稳临界点附近热对流流动的分叉情况,以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式.采用数值模拟方法,研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的,而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞,最后发展为混沌状态.