摘要

低光照图像增强目的是从低光照条件下恢复细节完整的图像,并逐渐成为计算机图像处理研究的热点。图像成像的质量对于智能安防、视频监控等场景至关重要,且在相关行业中有着十分广阔的应用前景。为了深入研究低光照图像增强,对传统低光照图像增强方法进行详细地分类阐述与分析,列举了基于深度学习的图像增强方法,对所用到的各种网络以及所解决的问题进行了详细的梳理,并将所提到的方法进行了细致的对比。又对数据集进行了细致的分析和研究,并对一些常用的评价指标进行了简单梳理。对所述内容做出总结以及指出了当前研究中存在的困难,并指出了未来的研究目标。