摘要
利用可见/近红外光谱透射技术检测温州蜜柑含水率。采用微分处理(differential processing,SD)、多元散射校正(multivariate scattering correction,MSC)、标准正态变换(standard normal variate,SNV)、SG卷积平滑以及标准化等预处理方法比较建立的偏最小二乘回归模型(partial least squares regression,PLS)的拟合准确度,并确定最佳预处理方法,同时采用竞争性自适应重加权采样算法(competitive adaptive reweighted sampling algorithm,CARS)提取特征波长,以此建立基于柑橘含水率的PLS模型、BP神经网络模型和最小二乘支持向量机模型(least squares support vector machine,LSSVM)。结果显示,使用经过SNV预处理后的光谱进行CARS筛选得到的359个波长建立的LSSVM模型预测效果最佳,校正集的相关系数和均方根误差分别为0.937 5和0.008 6,验证集相关系数和均方根误差分别为0.831 6和0.012 0,表明可见/近红外光谱技术用于温州蜜柑的含水率检测是可行的。
-
单位华中农业大学; 园艺林学学院