摘要
提高短期电力负荷预测精度有助于电力公司高效地管理能源和更加经济可靠地运行。随着信息通信技术在电力系统的广泛应用,可获得的电力系统数据迅速增多,为数据驱动的电力负荷预测提供了数据基础,但这些数据通常结构性较差且特征不明确。由此,提出了基于相似日和SAE-DBiLSTM模型的短期电力负荷预测方法。首先,对获得的电力负荷数据进行预处理,并利用栈式自编码网络无监督提取由相似日、基准日负荷数据和天气信息构成的数据隐含用电特征;再将所得的隐含用电特征输入深度双向长短期记忆网络(Deep bi-directional long short-term memory,DBi LSTM)进行训练学习;最后用2016年全国大学生电工数学建模竞赛数据集,将所提模型与其他模型进行对比测试(包括DBiLSTM、SAE-ELM、SAE-DGRU、SAE-DLSTM和SAE-DBiLSTM)。试验结果表明,SAE-DBiLSTM组合模型在不同地区均具有更高的预测精度,该方法简单可靠且能更好地预测短期区域电力负荷。
- 单位