摘要

针对传统AdaBoost算法的基分类器线性组合效率低以及过适应的问题,提出了一种基于基分类器系数与多样性的改进算法——WD AdaBoost。首先,根据基分类器的错误率与样本权重的分布状态,给出新的基分类器系数求解方法,以提高基分类器的组合效率;其次,在基分类器的选择策略上,WD AdaBoost算法引入双误度量以增加基分类器间的多样性。在五个来自不同实际应用领域的数据集上,与传统AdaBoost算法相比,Ceff Ada算法使用新的基分类器系数求解方法使测试误差平均降低了1.2个百分点;同时,WD AdaBoost算法与WLDFAda、ADAda、skAdaBoost等算法相对比,具有更低的错误率。实验结果表明,WD AdaBoost算法能够更高效地集成基分类器,抵抗过拟合,并可以提高分类性能。