摘要

基于深度学习的图像去噪方法在使用空洞卷积神经网络时,去噪后的图像容易在尖锐边缘生成伪像,并且为了处理不同的噪声水平,需要训练多个特定的去噪模型.对此文中提出基于空洞卷积神经网络的噪声水平可调的高斯去噪方法.加入噪声水平图,实现噪声水平可调性,并使用改善的空洞卷积及可逆的下采样技术,缓解由于传统空洞卷积带来的图像尖锐边缘的伪成像问题.将下采样的子图与相应的噪声水平图都输入到非线性映射模型中,并使用改善后的减小空洞率的神经网络进行训练.实验表明,文中方法在获得GPU加速的同时具有调节噪声水平的能力,能够改善尖锐边缘的伪像问题,保留更多图像细节.