摘要
针对以信息增益为划分标准的ID3算法中存在偏向属性取值多的属性等问题,提出了一种融合GINI指数的ID3改进算法。计算每个属性的信息增益和对应的GINI指数值,并计算所有属性的GINI指数算术平均值,筛选GINI指数低于算术平均值的属性记为候选属性集;从候选属性集中选择信息增益最大的属性建立分支,用递归方法构建决策树。实验使用6组UCI数据集进行验证。结果表明:该决策树的准确率均有所提高,对多值偏向问题有很好的克服作用。
-
单位江西中医药大学计算机学院