摘要

针对密集杂波背景下群目标分离或合并时估计误差增大的问题,提出了基于模糊聚类的群跟踪算法。该算法首先基于多特征信息融合的思想,融合群目标的运动状态信息和电磁辐射信息,通过计算候选回波与真实目标的关联度对量测进行筛选;其次,对群内目标进行聚类,形成若干个聚类小群,通过估计各小群的运动状态实现对大群的整体跟踪,并利用最近邻(NN)算法进行航迹维持。仿真结果表明,该算法提高了杂波背景下群目标跟踪的精度,并且能够较为准确地检测出群的分离与合并,相比传统算法,性能有所提高,具备工程实用性。