摘要
使用机器学习方法对心磁数据样本有无疾病进行诊断分类。首先从心磁数据中提取除极阶段(TT间隔)的数据构建磁场图,然后求解电流密度图,从电流密度图中提取相关的磁场特征。针对非平衡数据分类问题,分别使用样本加权的SVM、LR、KNN、Adaboost和XGBoost五种学习模型进行训练,在此基础上设计了使用加权的LR和KNN为初级学习器、SVM为次级学习器的结合学习模型对样本数据进行训练。采用结合学习模型对73名非患者和47名心肌梗死患者的36通道心磁数据进行实验,结果显示该模型对样本不均衡的心磁数据分类有较好的效果。
-
单位自动化学院; 河南理工大学