摘要

行人再识别技术是计算机视觉领域中一个具有挑战性的任务。该任务针对个体的外观变化模式展开研究,特征变化剧烈,存在小样本问题,而通过提出的一种基于迁移学习的度量学习模型,可约束不同数据集样本分布的差异,实现度量模型在不同数据集上的迁移。该算法不仅增强了度量模型训练样本的多样性,提高了分辨能力,同时提升了样本的适应性。最后,通过在iLIDS数据集进行度量模型的预训练,并在VIPeR和CUHK01两个数据集上进行的迁移学习,验证了算法的有效性和准确性。

  • 单位
    成都理工大学工程技术学院