基于改进YOLOX-S的安全帽反光衣检测算法

作者:程换新; 蒋泽芹; 程力; 成凯
来源:电子测量技术, 2022, 45(06): 130-135.
DOI:10.19651/j.cnki.emt.2108363

摘要

在工业生产和交通工程中,安全帽和反光衣都是员工重要的生命安全保障。针对传统安全帽反光衣识别方法只能检测单一颜色反光衣、检测效率低的问题,提出一种基于改进YOLOX-S网络模型的安全帽反光衣检测方法。使用简化BiFPN模块替换原加强特征提取网络,提高网络对不同尺度的特征提取能力;使用Mosaic方法进行训练,提高网络在复杂场景下的检测能力;使用GIoU损失函数,进一步提高模型的识别准确率。在扩充后的安全帽反光衣数据集上实验表明,所提算法在保持较高推理速度的情况下,mAP达83.74%,与原YOLOX-S相比,对戴安全帽、穿反光衣和行人的检测AP值有1%~3%不等的提高,对反光衣颜色无依赖性,有效实现了快速准确的安全帽反光衣检测。

全文