摘要
为了改善接触网管帽这类小尺度部件在故障检测过程中定位困难的情况,提出一种基于改进Faster R-CNN的接触网管帽目标定位算法。通过K均值聚类算法(K-means)对region proposal network(RPN)层中生成anchor boxes的比例及面积进行改进,所提算法在定位接触网管帽这类小部件上具有较好的表现。并通过比较VGG16、resnet50、resnet101、resnet152等4种特征提取网络在原始及改进的Faster R-CNN上定位管帽的准确率、召回率、准确率和召回率的调和平均F_1、单张检测时间等指标来选择最优特征提取网络。实验结果表明,基于resnet50的改进Faster R-CNN深度网络模型在接触网管帽定位中具有明显的优势,召回率为89.78%,定位准确率可以达到83.16%,F_1值为86.34%,单张检测时间为0.283 s。
-
单位中国铁路兰州局集团有限公司; 国网甘肃省电力公司庆阳供电公司; 兰州交通大学