摘要
提出一种基于注意力机制融合轻量化网络的桥梁裂缝图像分类方法。以轻量化卷积神经网络为理论基础分类识别桥梁裂缝图像,并在轻量化网络中加入注意力机制以解决网络无法自主关注所感兴趣区域的问题。根据桥梁图像中裂缝所占比例较小且边缘突出的特点,选用适合于识别桥梁裂缝的注意力机制——CBAM(convolutional block attention module),并将其嵌入轻量化卷积神经网络EfficientNetv2中,建立CBAM-EfficientNetv2模型。实验结果表明:CBAM-EfficientNetv2模型与VGG16、ResNet34等常用深度学习模型对比,可获得最优的桥梁裂缝图像分类效果,其分类识别准确率达到95.64%。