摘要

针对雷达频谱图空间信息较少,且通过单一机器学习算法进行毫米波雷达人体跌倒行为识别精度低、稳定性差的问题,使用人体空间雷达点云时序数据,提出了融合TsFresh特征提取和Stacking堆叠集成学习的跌倒识别方法。首先,采用TI-IWR6843毫米波雷达采集人体动作对应的人体运动跟踪时序数据,构建包含不同年龄、身高、体重信息、跌倒方式的数据集。其次,结合TsFresh时序特征提取工具和基于随机森林模型的特征重要性提取人体跌倒关键时序特征。最后,提出了融合随机森林、支持向量机、K-最邻近算法、XGBoost和CatBoost 5种单元机器学习模型的Stacking堆叠式集成学习方法。结果表明,与典型单一机器学习算法相比,Stacking集成学习算法具有明显的性能提升,能够有效提升人体跌倒行为识别准确性和泛化性。

全文