摘要
针对道路交通中目标所处环境复杂,存在模型对关键特征提取不充分、目标定位准确率低的问题,选取SSD模型为基本框架展开了特征提取方式、关键信息增强和非局部性特征定位的研究。首先,为针对性地解决道路交通场景下目标多尺度的问题,提出跳跃式反向特征金字塔结构,生成更具判别力的特征;其次,为解决不同语义层次的信息对特征融合过程贡献度不同的问题,设计基于注意力机制的自适应特征融合模块,在通道层面非先验地增强关键特征表达能力;最后,引入十字交叉注意力模块,提升模型对目标的位置敏感度。实验结果表明,与原始SSD模型相比,在保证实时性的情况下,改进方法的精度均值在PASCAL VOC子数据集上提升了2.6%,在自制道路交通数据集上提升了3.9%。综合考量,改进算法可广泛适用于道路车辆与行人检测任务中。
- 单位