摘要
为了实现土壤有机质快速、准确的测量,提出了一种基于人工嗅觉的土壤有机质含量检测方法。首先,由不同温度控制的10个气体传感器所构成的阵列对土壤样品气体进行采集;然后,提取每个传感器响应曲线上的7个特征(包括最大值、最小值、平均值、平均微分系数、响应面积、第30秒的瞬态值和第60秒的瞬态值),构建嗅觉特征空间;对特征空间优化后,采用回归算法建立预测模型。为减小不同测定算法、异常样本以及冗余特征对模型预测性能的影响,在应用蒙特卡罗抽样(Monte Carlo sampling,MCS)法剔除异常样本的基础上,采用主成分分析(Principal component analysis,PCA)法对特征空间进行降维处理,评估了包括偏最小二乘法回归(Partial least square regression,PLSR)、支持向量机回归(Support vector machine regression,SVR)和BP神经网络(Back propagation neural network,BPNN)等3种建模方法对土壤有机质含量的预测性能,选用决定系数R2、均方根误差(RMSE)和预测偏差比(RPD)评价各模型的预测性能。测试集验证结果表明,PLSR、SVR和BPNN这3种模型的预测值和样本的观测值之间的R2分别为0. 86、0. 91和0. 85,RMSE分别为2. 49、2. 05、2. 68 g/kg,RPD分别为2. 49、3. 02和2. 32。SVR模型的预测性能高于PLSR模型和BPNN模型,可对土壤有机质含量进行准确预测。
- 单位