摘要
锂离子电池剩余使用寿命(RUL)的估算是锂离子电池健康管理的关键,准确可靠地预测锂离子电池的剩余使用寿命对系统的安全正常运行至关重要。提出了一种结合完备集合经验模态分解(CEEMDAN)和支持向量回归(SVR)的锂离子电池剩余使用寿命预测方法。首先,在放电过程中提取了一个可测量的健康因子,并使用Pearson和Spearman法分析健康因子与容量之间的相关性,然后利用CEEMDAN将健康因子进行分解,获得一系列相对平稳的分量,最后采用CEEMDAN分解后的健康因子作为SVR预测模型输入,容量作为输出,实现锂离子电池RUL预测。利用NASA PCoE提供的锂离子电池退化数据集进行试验,与标准SVR模型相比,实验结果表明利用该方法能够有效验证所提出的RUL预测模型的有效性,并且使预测误差控制在2%以下。
- 单位