摘要

语音情感识别的数据集普遍存在语音数据长短不一致的现象,进行补零处理会造成无用信息的冗余。针对此问题,提出了一种基于差分整合移动平均自回归ARIMA算法特征补齐的语音情感识别算法。首先进行特征的选取,并利用ARIMA方法进行语音特征的补齐。然后,基于因果扩张卷积神经网络和长短期记忆网络,构建语音情感识别模型。最后,采用柏林语音集进行实验,结果表明:用ARIMA方法对特征进行补齐,一定程度上提高了模型的表现力;使用因果扩张卷积搭建模型,增加了模型的泛用性。