摘要
行人重识别精度主要取决于特征描述和度量学习两个方面。在特征描述方面,现有特征难以解决行人图像视角变化的问题,因此考虑将颜色标签特征与颜色和纹理特征融合,并通过区域和块划分的方式提取直方图获得图像特征;在度量学习方面,传统的核局部Fisher判别分析度量学习方法对所有查询图像统一映射到相同的特征空间中,忽略了查询图像不同区域的重要性,为此在核局部Fisher判别分析的基础上对特征进行区域分组,采用查询自适应得分融合方法来描述图像不同区域的重要性,由此实现度量学习。在VIPeR和i LIDS数据集上,实验结果表明融合后的特征描述能力明显优于原始特征,同时改进的度量学习方法有效提高了行人重识别精度。
-
单位解放军理工大学