摘要
引入了支持向量特征筛选方法,以克服基于想象动作诱发脑电特征的脑-机接口识别中,由于特征维度较高而训练数据有限、不易获得理想识别效果的问题.支持向量特征筛选方法采用扰动支持向量机代价函数的方法测量特征的分类贡献度,进而建立特征序贯指数,以递归方法进行特征排序和优化筛选.对14例受试者的左右上肢想象动作诱发脑电信号进行分析,提取6类246维特征,采用支持向量递归筛选方法进行特征优选,利用支持向量机对
-
单位电子工程学院; 中国医学科学院生物医学工程研究所; 天津大学