摘要
针对磨床工件加工产生的剧烈颤振及噪声会导致磨床其他零部件出现故障损坏等问题,提出了一种基于经验模态分解(EMD)、Hilbert变换(HT)以及支持向量机(SVM)的磨床振动故障监测方法。首先,利用传感器采集磨床振动信号,对信号进行降噪预处理;然后,将处理后的信号进行经验模态分解,并计算出有效的固有模态分量函数(IMF);再利用Hilbert变换计算出分解信号的能量分布和实时方差,并用信号的主频率带组成特征向量;最后,采用支持向量机算法进行样本分类识别训练并与BP神经网络识别方法进行对比。试验结果表明,该故障监测方法对磨床振动故障监测信号具有很好的判别效果。
- 单位