摘要

在基于压缩感知的计算鬼成像领域中,测量矩阵的设计问题一直是被研究的对象。理想的测量矩阵需要满足较高的采样效率、较好的重构效果和较低的硬件实现要求。为了减轻测量矩阵的设计与实现难度,提出了一种基于深度学习的二值测量矩阵的构建方法。该方法通过卷积操作模拟图像的压缩采样过程,并利用设计的采样网络对图像数据进行训练,以自适应的方式对测量矩阵进行迭代更新。仿真与实验结果表明,构建的测量矩阵能够在较低采样率条件下得到高质量的重构图像,进一步促进了计算鬼成像的实际应用。