摘要

目的:利用图神经网络,构建带有结构学习的多头密集连接图池化模型并用于图分类任务。方法:首先,用图卷积神经网络提取节点的初始特征。其次,用多头密集连接网络学习节点重要性得分,并根据得分进行节点采样得到池化图。之后,对池化图中的节点进行结构学习,以保证图结构的完整性。最后,将学到的图表示放到分类器中,完成图分类任务。结果:与其他图分类模型在七个广泛使用的数据集上进行实验对比,我们构建的模型在五个数据集上的分类结果达到最优。结论:结合结构学习的多头密集连接图池化模型在图分类任务中具有先进性。