摘要
香烟爆珠包装前的缺陷检测对确保香烟生产品质具有重要意义。基于卷积神经网络的新型爆珠缺陷检测算法,可检测爆珠中的气泡、凹陷、划痕和微小拖尾这4种典型缺陷。为满足工业检测的要求,在利用Faster RCNN对小目标检测精度高优势的同时,对其进行轻量化改进。首先,利用深度可分离卷积网络实现特征提取,相较于标准卷积,参数量与计算量可减少约90%;然后,为降低网络参数的减少对精度的影响,利用上下文增强模块整合多尺度特征,提高检测精度;最后,选择加入二阶矩估计的Adam算法替代传统Momentum算法实现网络参数学习,网络收敛速度更快,误差更小。检测结果表明:笔者算法对4种缺陷检测的平均精度均值可达98.16%,检测速度可达36.10 pcs/s,检测精度和检测速度均能满足实时检测的要求。
-
单位西安交通大学; 河南中烟工业有限责任公司