摘要
针对目前河蟹追溯成本高、消费者无法细粒度地追溯单体河蟹信息等问题,提出一种基于迁移学习和金字塔卷积的河蟹背甲图像个体识别算法。该算法使用金字塔卷积层替换普通残差卷积块构建网络模型,可以从蟹背图像中提取多尺度、深层次的特征信息。结果显示:采用金字塔卷积结构的Resnet34和Resnet50的准确率分别为98.38%、98.51%,与使用普通卷积层的模型相比,准确率提升5.49%、1.3%,而当模型深度达到101层时,模型性能不再明显提升。与使用金字塔卷积结构的全新学习模型相比,迁移学习方法的训练收敛迭代轮次从20轮降低至5轮,此时模型准确率为98.88%,较全新学习的准确率提升0.37%,同时弥补了样本量较少的问题。该研究为河蟹个体识别追溯提供了理论依据和技术支持。
-
单位上海海洋大学; 国家农业信息化工程技术研究中心