摘要
针对加权核范数最小化矩阵补全方法存在阈值决策函数单一、收敛精度不高等问题,提出一种粒子群优化的加权核范数最小化低秩矩阵补全算法。改进算法利用粒子群的启发式智能搜索能力,为待恢复矩阵的奇异值自适应地匹配恰当的阈值,以提升算法的收敛性能。改进工作主要包括:(1)设计多种奇异值阈值决策函数,为矩阵提供多种阈值分配策略;(2)改进粒子群的速度迭代公式,提出基于余弦函数的速度惯性调节公式以增强粒子群的全局搜索性能;(3)利用改进的粒子群优化算法为阈值决策函数搜索最优的参数组合,然后再通过阈值决策函数生成奇异值的阈值,重构恢复结果并提升算法的收敛精度。在人工数据和图像数据上的实验结果表明,与加权核范数最小化方法、奇异值阈值化方法以及低秩矩阵拟合方法相比,改进方法具有收敛精度更高、恢复结果更清晰等优势。
- 单位