摘要

同时同频全双工(co-frequency co-time full duplex, CCFD)系统在相同的频率上同时进行信号的收发,理论上可使通信频谱利用率提高一倍.但是由于收发天线等前端模块距离较近,系统中会存在很强的自干扰信号.当前常用的自适应滤波、最小二乘法估计等自适应干扰抑制方法存在着不能有效抑制多径信道和功放非线性产生自干扰信号的不足.针对此问题,本文提出一种基于双向长短时记忆神经网络(bi-directional long short-term memory, Bi-LSTM)的CCFD数字域自干扰抑制方法.首先根据多径信道的特征,采用记忆多项式对自干扰信道进行建模;然后采用Wild Horse优化算法(Wild Horse optimizer, WHO),通过迭代寻找到最优时延单位以确定训练数据的特征数;最后搭建Bi-LSTM网络进行训练,重构出自干扰信号,并在接收端减去,以达到自干扰抑制的目的.在仿真实验中采用OFDM (orthogonal frequency division multiplexing)信号作为参考信号,实现了47.17 dB自干扰信号抑制比,较传统最小二乘(least square, LS)算法有31.58 dB的提升.结果表明,本文所提出的方法可高效准确地提高CCFD系统的自干扰信号抑制能力.